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The thermo-fluid-dynamic field that arises when an infinite thick plate is impulsively
accelerated to a constant speed in a laminar regime is studied, taking into account the
coupling of the convection and conduction in the fluid with the conduction in the solid.
Two significant cases are discussed depending on the boundary condition imposed on
the unwetted side of the plate: constant temperature or adiabatic wall. The work is
particularly focused on analysing the singularities arising in the field at the initial time.
For this purpose an exact analytical solution of the problem governed by the Navier–
Stokes equations with constant properties and by the energy equations in the fluid
and in the solid is proposed and discussed. The non-dimensional parameter governing
the conjugated effects is shown to be the ratio between the thermal effusivities in
the fluid and in the solid. The results have also been extended to the analysis of
compressible flows by the Stewartson–Dorodnitsin transformation.

1. Introduction
Exact solutions are very few in the fluid dynamics technical literature, in particular

when the boundary conditions are unusual. The specification of the temperature, or of
the heat flux, are the typical boundary conditions adopted in the theoretical analysis
of the thermo-fluid-dynamic field around a body immersed in a free stream. However,
they are not realistic because either the temperature or the heat flux is unknown:
on the body surface we can only impose the continuity of these two functions
across the solid–fluid interface and we must solve, together with the equations of the
fluid motion, the energy equation in the solid; Perelman (1961) named this problem
conjugated heat transfer.

The main interest in conjugated effects began with the aerospace industry. New
technical applications, such as computer CPU cooling, Cole (1997), or food freezing
technology, Moraga & Medina (2000), followed. Recently, a number of papers have
studied the influence of conjugated effects on the numerical and experimental analysis
of confined turbulent convection, see, among others, Verzicco (2002), Niemela &
Sreenivasan (2003), Verzicco (2004).

Due to the complexity of the subject, the conjugated heat transfer effects are often
analysed by numerical methods: Tsai, Sheu & Lee (1998), Vynnycky, Kimura &
Kanev (1998). Nonetheless an analytic approach, even for very simple geometries,
could prove useful in order to manage possible singularities of the solution and
to identify how the parameters involved govern the phenomenon. Moreover local
asymptotic solutions can be used to quantify these effects quickly for more complex
geometries also and, in addition, they are useful tests for experiments.
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Since the basic works of Luikov, Aleksashenko & Aleksashenko (1971) and Luikov
(1974) few analytical results have been presented; a detailed analysis of the literature
can be found in Cole (1997). Pozzi & Lupo (1989) discussed a semi-infinite plate
in a steady flow. The present case of an infinite thick plate impulsively accelerated
from rest in a compressible fluid was studied by Pozzi, Bassano & de Socio (1993).
Two conditions were studied consisting of assuming on the unwetted plate side either
a constant temperature or an adiabatic condition. A semi-infinite flat plate was
considered by Pozzi & Tognaccini (2000, 2001). In these works the authors studied
the laminar boundary layer equations coupled with an approximated solution of the
temperature field in the solid. These papers showed the appearance of singularities in
the solutions at the initial time.

The aim of the present work is to remove the approximation of the temperature
field in the solid and to study the importance of these singularities and how they are
related to the approximations introduced in the model. Just at the initial time, when
the thickness of the plate has the largest influence on the thermo-fluid-dynamic field
in the fluid, the approximations in the modelling of the temperature field in the solid
could be misleading.

The suddenly accelerated motion from rest to a constant velocity leads to a singular
behaviour of the flow because it cannot be described by means of a Taylor expansion.
Therefore it is not easy to give a good representation of the phenomenon without
an accurate analysis. In the previous work this problem was avoided by a suitable
averaging of the quantities of interest. However these approximations are not good
for very small values of the time, as the present results will show. Moreover, it is not
easy to identify a priori the inlet time, i.e. the time interval in which the singularity is
significant, or the physical parameters governing the phenomenon and the mechanism
involved and, hence, how to control it (making these times shorter or longer, for
instance). Therefore it is useful to have the exact solution that holds for all times,
either small and large.

In addition, we can derive simple expressions for the characteristic times necessary
to reach a steady regime, which identify the time interval in which the conjugated
effects are significant. These relations can be used, for instance, for verifying the
accuracy of measurements of thermal quantities in wind-tunnel simulations of high-
speed flows which are usually limited to small times, one of the reasons motivating
the studies on conjugated heat transfer in the aerospace research.

Unsteady conjugated effects, such as the ones studied in this work, are also
significant in the analysis of turbulent flows, because they can influence the boundary
conditions on the wall for the fluctuating thermal field, Schlichting & Gersten (2000).
It will be shown that the same non-dimensional parameter controls conjugated effects
in both problems.

In the unsteady problem considered here, we study the incompressible, Navier–
Stokes equations (laminar flow) for an infinite plate coupled with the exact energy
equation in the solid. In the range in which the Stewartson–Dorodnitsin trans-
formation is valid, the model can also be applied to the analysis of compressible
flows.

We looked for analytical solutions; because of the assumption of an infinite plate
(Rayleigh-type flow) both problems, in the fluid and in the solid, are linear, and
therefore an approach based on the Laplace transform is appropriate. However the
main difficulty found was the definition of a proper procedure for taking into account
the coupling of the thermo-fluid-dynamic field in the flow with the temperature field
in the solid. This procedure will be presented in the next sections together with the
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Figure 1. Sketch of the impulsive flow arising around an infinite thick plate. The problem
depends on the condition imposed on the unwetted plate side: in terms of temperature (T = Te)
or heat flux (JT = 0).

extension to the case of compressible flow. The solutions obtained will be discussed
and compared with the previous results based on the approximated temperature
distribution in the solid. Finally, the results obtained will be summarized in the
conclusions together with the most significant simple analytical relations derived in
the paper.

2. The infinite thick plate problem
2.1. Incompressible flow

We consider an infinite plate (in both directions) of thickness b, wetted by a fluid
on one side, which is impulsively accelerated from rest to a constant speed U∞ at
the time t = 0. The origin of the spatial coordinate in the fluid, orthogonal to the
plate (y) is placed at the solid–fluid interface. The initial temperature field T (x, y, t)
is uniform, in both the fluid and the solid: T (x, y, 0−) = T∞ (see figure 1). We assume
that an incompressible, laminar flow with constant properties (viscosity µ and thermal
conductivity λ) arises on the wetted side. Since we are considering an infinite plate, the
spatial derivatives in the streamwise direction are vanishing and the Navier–Stokes
equations can be further simplified. The boundary conditions for the velocity are
matching with the free stream value for y → ∞ and the usual no-slip condition on the
plate.

In this case the dynamic field has the well-known solution (Rayleigh flow)
u = erf[η/(2

√
τ )], (White 1974, p. 146), where u is the streamwise velocity component

referenced to the free-stream value, erf specifies the error function, η =
√

Re∞y/L and
τ = tU∞/L, with Re∞ the Reynolds number and L a reference length (e.g. L = b or a
streamwise reference length).

After defining the non-dimensional temperature θ(τ, η) = (T − T∞)/T∞ the energy
equations in the fluid and in the solid assume the following forms:

∂θ

∂τ
− 1

Pr

∂2θ

∂η2
= E

(
∂u

∂η

)2

,
∂θ̄

∂τ
= tfs

∂2θ̄

∂Y 2
, (2.1)
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where θ̄ (τ, Y ) is the non-dimensional temperature in the solid, E = U 2
∞/(cpT∞) (cp

is the specific heat at constant pressure), tfs = Lαs/(U∞b2) is the ratio between the
reference times in the fluid and in the solid (αs is the thermal diffusivity in the solid)
and Pr is the Prandtl number. The parameter E is strictly connected with the Eckert
number (Ec = ET∞/∆Tref). Y is the spatial coordinate in the solid, orthogonal to the
plate, referenced to the plate thickness b and with origin on the unwetted plate side
(Y = 1 corresponds to η = 0).

The coupling between the thermal field in the fluid and in the solid is obtained
by imposing the continuity of the temperature and of the heat flux at the solid–fluid
interface:

θ(τ, 0) = θ̄(τ, 1), p
∂θ

∂η
(τ, 0) =

∂θ̄

∂Y
(τ, 1), (2.2)

where p = (b/L)(λ∞/λs)
√

Re∞ (λs is the thermal conductivity in the solid) and is
directly related to the Brun number introduced by Luikov (1974) (Br = p

√
Pr); p and

tfs are the additional parameters ruling the conjugated heat transfer phenomena. We
shall show later that a single parameter Λ can describe the conjugated effects if the
time is referenced to the reference time in the solid. However this choice makes the
analysis of the results more difficult.

Two cases are studied here, depending on the condition imposed on the unwetted
side of the plate:

(a) isothermal case, the temperature is kept at a constant value θ̄(τ, 0) = θe;
(b) adiabatic case, the heat flux is zero, ∂θ̄/∂Y (τ, 0) = 0.

Case (b) also provides the solution of the important problem consisting of a
symmetrical flow around a thick plate (with thickness 2b) wetted by the fluid on
both sides.

2.2. Compressible flow

As discussed in detail by Van Dyke (1952) and Hanin (1960) the compressibility
complicates the problem of the thermal field in the Rayleigh flow. However, the
same mathematical model also governs the problem in the case of compressible
flow by introducing some approximations. In the case of a boundary layer
flow, the Stewartson–Dorodnitsin transformation (also called Dorodnitsin–Howarth,
Schlichting & Gersten 2000, p. 246) makes it possible to decouple the energy equation
from the continuity and momentum ones. Assuming µ/µ∞ = λ/λ∞ = ρ∞/ρ = T/T∞ (ρ
is the fluid density), this transformation is given by

η =

√
Re∞

L

∫ y

0

ρ

ρ∞
dy, τ =

tU∞

L
. (2.3)

The solution of the dynamic field is again the error function and the energy equations
(2.1) are exactly recovered with E = (γ − 1)M2

∞, where γ is the ratio between the
specific heats and M∞ is the free-stream Mach number.

The Stewartson–Dorodnitsin transformation assumes a linear variation with
temperature of the fluid properties µ and λ. However it can also be applied by
considering a suitable linearization of the more general Sutherland law as indicated in
Schlichting & Gersten 2000, p. 243), which allows one to write µ/µ∞ = λ/λ∞ = kµT /T∞.
In this case it is only necessary to substitute in equations (2.3) a modified Reynolds
number R̄e =Re∞/kµ.

Therefore in the following, the results proposed can be used to discuss both the
exact incompressible problem or the approximated compressible case; in the latter, the
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Stewartson–Dorodnitsin inverse transformation is only required to obtain the results
in the physical space.

2.3. Previous results

In Pozzi et al. (1993) a solution of this problem was proposed. However, the thermal
field in the solid was approximated by linear (in the isothermal case) and by parabolic
(in the adiabatic case) distributions. In this way, after integration of the energy
equation with respect to Y it was possible to derive a coupling condition written in
terms of variables of the fluid field only.

An interesting result of the analytical solutions obtained in that work was the
particular behaviour of the solution near the solid–fluid interface at the initial time:
in the isothermal case at τ = 0 the interface temperature was continuous; on the
contrary, in the adiabatic case, a jump in the temperature was found.

3. The solution in the transformed variables
3.1. The solution for the fluid

A particular integral of the energy equation in the fluid can be found by looking
for self-similar solutions: by means of the similarity variable ζT =

√
Prη/(2

√
τ ) it is

possible to obtain

θp(ζT ) = E

[
2

π

arctan(K)

K
− 2√

π

∫ ζT

0

f (ξ ) dξ +
1

K
erfcζT erf(KζT )

]
, (3.1)

where erfc specifies the complementary error function, K2 = 2/Pr −1, and, in the case
of a fluid with Pr < 2:

f (ξ ) = e−(Kξ )2erfc(ξ ). (3.2)

Useful properties of this solution are

θp(τ, 0) = E
2

π

arctan(K)

K
, θp(0, η) = 0,

∂θp

∂η
(τ, 0) = 0,

∂θp

∂τ
(0, 0) = 0. (3.3)

θp is the solution of the temperature field in the case of Rayleigh flow over a plate
with infinitely small thickness (b = 0) and an adiabatic wall. θaw = 2E arctan K/(πK)
is the adiabatic wall temperature. Pozzi & Tognaccini (2004) discussed in detail this
particular solution corresponding to the non-conjugated problem in the fluid; they
also provided analytical expressions for the recovery factor in the adiabatic case and
for the Nusselt number in the isothermal case. In the same reference, the solution for
Pr > 2 is also discussed (in this case K is imaginary, but equation (3.1) is still valid).

Let Θ(s, η) be the Laplace transform of θ(τ, η) with respect to τ , then the homo-
geneous equation associated with the energy equation for the fluid in transformed
variables reduces to

∂2Θ

∂η2
− sPrΘ = 0, (3.4)

which is still homogeneous because θ(0+, η) = 0 due to the boundary conditions.
Therefore, considering that θ vanishes as η → ∞, the transformed solution for the
fluid is

Θ(s, η) = Θhw
(s)e−

√
Pr

√
sη + Θp(s, η), (3.5)
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where Θp(s, η) is the Laplace transform of equation (3.1). In particular, at the solid–
fluid interface:

Θw(s) = Θhw
(s) +

θaw

s
,

(
∂Θ

∂η

)
w

(s) =
√

sPr

[
θaw

s
− Θw(s)

]
. (3.6)

These relations show that, at the solid–fluid interface, the temperature gradient in the
fluid can be expressed in terms of the unknown transformed temperature Θw(s).

It is now necessary to find the temperature distribution in the solid and, then, to
couple the thermal fields in the fluid and in the solid.

3.2. The solution for the solid

Denoting by Θ̄(s, Y ) the Laplace transform of θ̄ (τ, Y ) we have from the second of
equations (2.1)

∂2Θ̄

∂Y 2
− s

tfs
Θ̄ = 0. (3.7)

This equation is homogeneous since θ̄ (0+, Y ) = 0 (at the initial time the temperature
in the solid is uniform and equals T∞).

When a constant temperature θe is imposed at Y = 0 (isothermal case), the solution
is

Θ̄(s, Y ) =
1

sinh (
√

s/tfs)

{
θe

s
sinh

[√
s

tfs
(1 − Y )

]
+ Θ̄w(s) sinh

(√
s

tfs
Y

)}
, (3.8)

where Θ̄w(s) is the transformed temperature at the solid–fluid interface. In particular
the transformed temperature gradient at the solid–fluid interface is(

∂Θ̄

∂Y

)
w

=

√
s

tfs

[
Θ̄w(s)

tanh (
√

s/tfs)
− θe

s

1

sinh (
√

s/tfs)

]
. (3.9)

Again, at the solid–fluid interface, the transformed temperature gradient has been
expressed in terms of the transformed temperature.

In the adiabatic case ∂θ̄/∂Y (τ, 0) = 0. The solution of equation (3.7) is

Θ̄(s, Y ) = Θ̄w(s)
cosh (

√
s/tfsY )

cosh (
√

s/tfs)
(3.10)

and, at the solid–fluid interface:(
∂Θ̄

∂Y

)
w

= Θ̄w(s)

√
s

tfs
tanh

(√
s

tfs

)
. (3.11)

In the fluid and in the solid the only unknowns are Θw(s) and Θ̄w(s) respectively.

3.3. Coupling of the solid–fluid thermal field

The mathematical model is closed by imposing the coupling conditions (2.2) in terms
of the transformed variables:

Θw(s) = Θ̄w(s), p

(
∂Θ

∂η

)
w

(s) =

(
∂Θ̄

∂Y

)
w

(s). (3.12)

The substitution of the expressions for (∂Θ/∂η)w and (∂Θ̄/∂Y )w in equations (3.12)
provides the transformed interface temperature for both the isothermal and adiabatic
case:
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isothermal case

Θw(s) =
1

s

θawΛeσ − Λe−σ + 2θe

(1 + Λ)eσ + (1 − Λ)e−σ
, (3.13a)

adiabatic case

Θw(s) =
θawΛ

s

eσ + e−σ

(1 + Λ)eσ − (1 − Λ)e−σ
, (3.13b)

where σ =
√

s/tfs and Λ = p
√

tfs
√

Pr .
The problem is solved once Θ(s, η) and Θ̄(s, Y ) are inversely transformed into the

physical variables θ(τ, η) and θ̄ (τ, Y ).

4. The temperature at the solid–fluid interface
The inverse transformation can be obtained more easily after performing a series

expansion of equations (3.13). The application of some properties of the binomial
series, see Abramowitz & Stegun (1965, p. 15), makes it possible to write

(1 + Ae−2σ )−1 =

∞∑
n=0

(−A)ne−2nσ , (1 − Ae−2σ )−1 =

∞∑
n=0

Ane−2nσ , (4.1)

where A= (1 − Λ)/(1 + Λ). These series are absolutely convergent for
∣∣Ae−2σ

∣∣ < 1,
a condition always satisfied (Λ > 0 is required). Substituting the first expression into
equation (3.13a) and the second into equation (3.13b), we obtain

isothermal case

Θw(s) =
1

s

{
θw0 + κ

[
θe

∞∑
n=0

(−A)ne−(2n+1)σ − θw0

∞∑
n=0

(−A)ne−2(n+1)σ

]}
, (4.2a)

adiabatic case

Θw(s) =
θw0

s

∞∑
n=0

An
[
e−2nσ + e−(2n+1)σ

]
, (4.2b)

where θw0 = θawΛ/(1 + Λ) and κ = 2/(1 + Λ).
The inverse transform of these relations, i.e. the physical temperature at the solid–

fluid interface, can be obtained in analytical form, see Erdélyi (1954):

isothermal case

θw(τ ) = θw0

[
1 − κ

∞∑
n=0

(−A)nerfc

(
n + 1√

tfsτ

)]
+ κθe

∞∑
n=0

(−A)nerfc

(
2n + 1

2
√

tfsτ

)
, (4.3a)

adiabatic case

θw(τ ) = θw0

[
1 + κ

∞∑
n=0

Anerfc

(
n + 1√

tfsτ

)]
. (4.3b)

The analysis of these relations shows that both solutions are characterized at the
initial time, when the plate is impulsively accelerated, by a jump of the interface
temperature (θw0), which is the same for both cases. It depends on the adiabatic wall
temperature (θaw) and on Λ. For Λ → 0 θw0 → 0, while for Λ → ∞ θw0 → θaw . This
behaviour is different from that predicted in Pozzi et al. (1993), where the conjugated
effects were taken into account by an approximating procedure. In the previous work
the temperature was found to be continuous at the initial time for the isothermal
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Figure 2. Temperature at the solid–fluid interface against time in the isothermal case. E = 3.6,
Pr = 0.7, Λ= 0.8367. —, present solution (relations (4.3a)); −−, Pozzi et al. (1993); −·−,
asymptotic formula (4.4a). (a) θe = 2 (heating); (b) θe = −0.3 (cooling).

case. On the contrary, a temperature jump was found in the adiabatic case; however
this discontinuity was independent of the coupling parameter Λ, and was given by
θw(0+) = θaw .

If the time variable is referenced to the reference time in the solid τ̄ = tfsτ , the only
parameter related to the conjugated phenomenon and influencing the non-dimensional
temperature at the solid–fluid interface is Λ =p

√
tfs

√
Pr (and, obviously, θe in the

isothermal case). Therefore Λ is the only parameter characterizing the conjugated
effects when the time is referenced to the characteristic time in the solid (the adopted
time scale is important because defines the time interval in which the conjugated
effects are significant). Λ has an interesting physical meaning: Λ = b/L ER , where
ER is the ratio between ef =

√
ρ∞cpλ∞ and es =

√
ρscsλs which are respectively the

thermal effusivity in the fluid and in the solid (ρs and cs are the density and the specific
heat of the solid). The thermal effusivity characterizes the ability to exchange thermal
energy with the surroundings. By choosing L = b, we obtain that the conjugated effects
are ruled by Λ =ER , the effusivity ratio. It is the same kind of phenomenon shown
by Schlichting & Gersten (2000, p. 507). They suggested that ‘a constant temperature
assigned at the wall is a physically correct boundary condition for the energy equation
in a turbulent flow when ρscsλs is very large’.

The interface temperatures are plotted against tfsτ in figure 2 for the isothermal
case and in figure 3 for the adiabatic case, with the conditions E = 3.6, Pr = 0.7,
Λ =0.8367. The condition E =3.6 is equivalent to M∞ =3 in air. The series in
equations (4.3) are quickly converging; however 40 terms in the summations have
been used in the plots. The previous solutions of Pozzi et al. (1993) are also plotted.
Despite the different behaviour at the initial time, agreement with the previous
results is recovered as time grows. Figure 2(a) shows a case in which the plate is
heated (θe > 0), while in figure 2(b) the plate is cooled (θe < 0). Although the error
due to the approximations of the previous solution depends on ER and |θe|, we
systematically noted smaller errors in the cooling case, which can be explained by
the analysis of the thermal field in the solid that will follow in one of the next
sections. In the adiabatic case in figure 3 the usual asymptotic behaviour, not shown
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Figure 3. Temperature at the solid–fluid interface against time in the adiabatic case. E = 3.6,
Pr = 0.7, Λ= 0.8367. —, present solution (relations (4.3b)); −−, Pozzi et al. (1993); −·−,
asymptotic formula (4.4b).

in the figure, is only recovered for very large time values. Since ER is small in
many practical applications (air–metal for instance) the temperature jump θw0 can be
small and the error of the previous solution can be large, especially in the adiabatic
case.

The steady solution is characterized by θw = θe, in the isothermal case, and by
θw = θaw (the adiabatic wall temperature) in the adiabatic case which allows thermal
equilibrium to be reached in the solid. These results follow from equations (4.3), taking
into account equations (4.1) that give for τ → ∞ (σ → 0)

∑∞
n=0(±A)n = 1/(1 ∓ Λ).

The leading terms in the summations of relations (4.3) provide the local solution
of θw for τ → 0. A more convenient way to perform the local and the asymptotic
analysis is in the transformed space, as briefly discussed in the Appendix. The
asymptotic behaviour (τ → ∞), also plotted in the figures, is given by

isothermal case

θw(τ ) ≈ θe + (θaw − θe)
Λ

π
√

tfsτ
, (4.4a)

adiabatic case

θw(τ ) ≈ θaw

(
1 − 1

πΛ
√

tfsτ

)
. (4.4b)

The non-dimensional time necessary to reach the steady state can be easily quantified
by these relations.

In figure 4 the effects of the coupling parameter Λ on the interface temperature
are shown. During the transitional regime, in the isothermal case, for θaw > θe, a peak
value of the interface temperature is reached, with the corresponding time depending
on Λ.

This figure also shows when conjugated effects are significant (with time referenced
to properties of the solid). In particular, in the isothermal case, they would be
negligible in the case of a sudden jump of the interface temperature to θw = θe, which
is obtained for Λ → 0. On the contrary, in the adiabatic case, a sudden jump of the
interface temperature to the adiabatic wall temperature (characterizing the absence
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Figure 4. Temperature at the solid–fluid interface against time: (a) isothermal case;
(b) adiabatic case. E = 3.6, Pr = 0.7, Λ= 0.0837, 0.837, 8.37 (θe = 0.3 in the isothermal case).

of conjugated effects) is obtained for Λ → ∞. A noteworthy case is obtained when
Λ =1, i.e. thermal effusivities in the fluid and in the solid are equal: in this case A= 0
and only the leading terms in the summations of equations (4.3) are different from
zero.

By referencing the heat flux at the solid–fluid interface to dimensional parameters
of the solid we introduce the Nusselt number Nus = (∂θ̄/∂Y )w = p(∂θ/∂η)w , the
last equality deriving from the coupling conditions (2.2). Nus can be obtained by
performing the inverse transform of the second equation of (3.6):

isothermal case

Nus(tfsτ ) =
Λ√

π
√

tfsτ

[
θaw − θw0 + κθw0

∞∑
n=0

(−A)ne−(n+1)2/(tfsτ )

− κθe

∞∑
n=0

(−A)ne−(2n+1)2/(4tfsτ )

]
, (4.5a)

adiabatic case

Nus(tfsτ ) =
Λ√

π
√

tfsτ

[
θaw − θw0 − κθw0

∞∑
n=0

Ane−(n+1)2/(tfsτ )

]
. (4.5b)

In both cases the heat flux is infinite for τ → 0 with the local behaviour

Nus(tfsτ ) ≈ Λ√
π

√
tfsτ

(θaw − θw0) =
Λ

1 + Λ

θaw√
π

√
tfsτ

. (4.6)

This relation and the local analysis of equation (4.3) show that for τ → 0 the
temperature and the heat flux at the solid–fluid interface are the same in both
the isothermal and adiabatic case; therefore they do not depend on the condition
imposed on the unwetted side of the plate. Since θaw − θw0 > 0, at the very initial time
the fluid is always heating the plate. For large time values the heat flux is vanishing
in both cases; however, in the isothermal case, the plate will heat the fluid if θe > θaw
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Figure 5. Heat flux at the solid–fluid interface against time: (a) isothermal case; (b) adiabatic
case. —, present solution; −−, Pozzi et al. (1993). E =3.6, Pr = 0.7, Λ= 0.837 (θe = 2 in the
isothermal case).

which implies the existence of a time value characterized by zero heat flux. These
results, compared with Pozzi et al. (1993), are shown in figure 5.

The influence of the coupling parameter Λ on the heat flux needs further analysis.
The asymptotic analysis for τ → ∞ provides

isothermal case

Nus(tfsτ ) =
Λ√

π
√

tfsτ
(θaw − θe), (4.7a)

adiabatic case

Nus(tfsτ ) =
θaw

2
√

π(tfsτ )3/2
. (4.7b)

The asymptotic stage of Nus does not depend on the coupling parameter Λ in the
adiabatic case. This relation can provide an alternative definition of the characteristic
time for which the conjugated effects are negligible. However in the definition of Nus

a scale defined by the solid properties appears. In terms of parameters of the fluid
the alternative definition of the Nusselt number would be Nuf =

√
Re∞Pr tfsNus/Λ.

Therefore, in terms of fluid properties, the asymptotic heat flux depends on Λ,
although the parameter tfs also appears (which is true for any quantity expressed in
terms of fluid properties).

5. The temperature distribution in the fluid
θp(ζT ) is already known in the physical space, therefore the determination of the

temperature field in the fluid only requires the inverse transform of Θ̄(s, η) (relation
(3.5)). This operation does not cause additional difficulties once the series expressions
of Θw(s) are known (equations (4.2)) and taking into account that Θhw

(s) = Θw(s) −
θaw/s, due to equations (3.6) and (3.3). In particular we obtain
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Figure 6. Temperature distribution in the fluid and in the solid for different time values:
(a) isothermal case; (b) adiabatic case. E = 3.6, Pr =0.7, Λ= 0.837, tfs = 1, τ = 0.01,
0.11, 0.21, 0.31, 0.41. θe =2 in the isothermal case.

isothermal case

θ(τ, η) = θi(ζT )−κθw0

∞∑
n=0

(−A)nerfc

(
n + 1√

tfsτ
+ ζT

)
+κθe

∞∑
n=0

(−A)nerfc

(
2n + 1

2
√

tfsτ
+ ζT

)
,

(5.1a)
adiabatic case

θ(τ, η) = θi(ζT ) + κθw0

∞∑
n=0

Anerfc

(
n + 1√

tfsτ
+ ζT

)
, (5.1b)

where

θi(ζT ) = (θw0 − θaw)erfcζT + θp(ζT ). (5.2)

Both solutions are made up of a self-similar term θi(ζT ) and the remaining part
which is not self-similar. The self-similar part θi(ζT ) is the leading term for τ → 0 in
both cases. Therefore, for small time values, the solution in the fluid is self-similar
and independent of the condition imposed on the unwetted side of the plate. It is
interesting to note that, in the isothermal case with θe > θaw , at the very initial time,
the plate is heated from both sides. The time evolution of the temperature distribution
in the fluid is plotted in figure 6 for both the isothermal and adiabatic cases and for
the same flow conditions as the previous figures. These profiles are also valid in the
case of compressible flow by the Stewartson–Dorodnitsin transformation. However
the temperature distribution in the fluid influences the scaled spatial coordinate η;
therefore the velocity and the temperature profiles in the physical space are locally
distorted by the density variations.

6. The temperature distribution in the solid
In a similar way, the temperature distribution in the solid is obtained by substituting

the expressions (4.2) of Θw(s) in equations (3.8), (3.10) and, then, performing the
inverse Laplace transform. The isothermal case is complicated by the appearance of
products of series. By applying the Cauchy rule we obtain
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isothermal case

θ̄(τ, η) = θw0

{
erfc

(
1 − Y

2
√

tfsτ

)
− erfc

(
1 + Y

2
√

tfsτ

)

+

∞∑
n=1

Bn

[
erfc

(
2n + 1 − Y

2
√

tfsτ

)
− erfc

(
2n + 1 + Y

2
√

tfsτ

)]}

+ θe

{
erfc

(
Y

2
√

tfsτ

)
+

∞∑
n=1

Bn

[
erfc

(
2n + Y

2
√

tfsτ

)
− erfc

(
2n − Y

2
√

tfsτ

)]}
, (6.1a)

adiabatic case

θ̄(τ, η) = θw0

∞∑
n=0

An

[
erfc

(
2n + 1 − Y

2
√

tfsτ

)
+ erfc

(
2n + 1 + Y

2
√

tfsτ

)]
, (6.1b)

where An =
∑n

i=1(−A)i−1 and Bn = 1 − κAn.
The time evolution of the temperature distribution in the solid is also plotted in

figure 6 for both the isothermal and adiabatic cases. The figure highlights that for
τ → 0 and Y → 1 the temperature distributions in the solid for the isothermal and
for the adiabatic case are equal: for very small time values the unwetted side of the
plate is infinitely far from the solid–fluid interface and, locally, does not influence the
temperature distribution.

It is interesting to note that in the isothermal case with heating (θe > 0), an example
given in figure 6, the temperature distribution is not monotone for small times.
This behaviour clearly cannot be represented by the linear approximation proposed
by Pozzi et al. (1993), explaining the poor accuracy of their results for τ → 0. The
temperature distribution becomes monotone when Nus = 0; the corresponding time
(τin) is a guess of the lower limit at which the assumption of a linear temperature
distribution in the solid is valid. An approximated expression for τin is obtained by
taking into account the leading terms in equation (4.5a):

τ̄in ≈
{

ln

[
16

(
θe

θaw

)4

− 8Λ

1 + Λ

]}−1

. (6.2)

By using data of figure 5(a) this relation provides τ̄in =0.275, in good agreement with
the result shown in the figure.

7. Conclusions
In this work a solution has been proposed for the conjugated heat transfer problem

over a thick plate (infinite in both directions) that is impulsively accelerated. The
exact energy equations have been solved in the fluid and in the solid. This solution
provides an accurate analysis of the time development of the temperature field, in
particular at the solid–fluid interface and of its influence on the viscous flow arising
over the plate. The application of the Stewartson–Dorodnitsin transformation also
makes it possible to extend the application of the results to compressible flows. Two
cases were studied, defined by the condition imposed on the unwetted side of the
plate (isothermal and adiabatic). The solutions, obtained analytically and explicitly
by means of Laplace transform, highlight the dependence on the variables and the
physical parameters governing the phenomena. Both cases are characterized by a time
discontinuity of the temperature at the solid–fluid interface for very small time values.



374 A. Pozzi and R. Tognaccini

This discontinuity is defined in terms of the adiabatic wall temperature and by the
coupling parameter ER , the ratio between the thermal effusivities in the fluid and in
the solid, and it vanishes for ER → 0. For larger time values, the present solutions
are in agreement with previous results relying on an approximate solution of the
temperature field in the solid; nonetheless the present results suggest some limitations
of the previous analysis for small time values.

ER is the only parameter related to conjugated effects which influences the
temperature and heat flux distributions if the time scale and the Nusselt number
are defined by properties of the solid. In non-dimensional variables, the influence of
ER on the conjugated effects in the fluid is completely different for the isothermal
and the adiabatic cases: in the isothermal case conjugated effects become negligible
as ER → 0; on the contrary, they are negligible in the adiabatic case for ER → ∞.

The results given in the present paper cannot be obtained by previous analytical
or numerical work. In the following we show some results obtainable through the
analytical form of the solution.

7.1. Isothermal case

Local and asymptotic behaviour of the interface temperature and heat flux:

τ → 0 :

θw(tfsτ ) ≈ θw0

[
1 − κ√

π

√
tfsτe−1/(tfsτ )

]
+ 2θe

κ√
π

√
tfsτe−1/(2tfsτ ), (7.1)

Nus(tfsτ ) ≈ Λ√
π

√
tfsτ

(θaw − θw0). (7.2)

τ → ∞ :

θw(tfsτ ) ≈ θe +
Λ

π
√

tfsτ
(θaw − θe), (7.3)

Nus(tfsτ ) ≈ Λ√
π

√
tfsτ

(θaw − θe). (7.4)

Characteristic time necessary to reach the steady state, defined by |θw(τ̄st) − θe| = ε:

τ̄st ≈ Λ2

π2ε2
(θaw − θe)

2 . (7.5)

7.2. Adiabatic case

Local and asymptotic behaviour of the interface temperature and heat flux:

τ → 0 :

θw(tfsτ ) ≈ θw0

[
1 +

κ√
π

√
tfsτe−1/(tfsτ )

]
, (7.6)

Nus(tfsτ ) ≈ Λ√
π

√
tfsτ

(θaw − θw0). (7.7)

τ → ∞ :

θw(tfsτ ) ≈ θaw

(
1 − 1

πΛ
√

tfsτ

)
, (7.8)
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Nus(tfsτ ) ≈ θaw

2
√

π(tfsτ )3/2
. (7.9)

Characteristic time necessary to reach the steady state, defined by |θw(τ̄st)−θaw| = ε:

τ̄st ≈ θ2
aw

π2Λ2ε2
. (7.10)

Appendix. Asymptotic analysis of the solution
The initial and asymptotic behaviour of the temperature at the solid–fluid interface

can be better identified by analysing the solution in the transformed space.
Denoting by F (s) the Laplace transform of f (t), the Abelian and Tauberian

theorems ensure that
1. if, for t → 0, f (t) → Ata then, for s → ∞, F (s) → A�(a + 1)/sa+1;
2. if, for t → ∞, f (t) → Ata then, for s → 0, F (s) → A�(a + 1)/sa+1;

where Γ (x) is the gamma function.
By theorem 1, the local behaviour of θw(τ ) for τ → 0 can be found by looking for

the behaviour of Θw(s) (relations (3.13)) for s → ∞ and then performing the inverse
transform, again as suggested by theorem 1. Similarly, by theorem 2, the asymptotic
behaviour of θw(τ ) for τ → ∞ can be found by looking for the behaviour of Θw(s) for
s → 0 and then performing the inverse transform. For example, the leading term of
both relations (3.13) for s → ∞ is Θw0(s) = θw0/s providing θw(0) = θw0 in the physical
space by theorem 1.

The first-order correction can be found in the same way by analysing Θw(s)−Θw0(s).
This procedure can be generalized to find higher-order terms; but care must be used
in the expansion because no term can be a constant (the inverse transform of a
constant does not exist).

The asymptotic analysis of the heat flux is also convenient in the transformed
space: at the solid–fluid interface, the transformed heat flux can be expressed in terms
of the transformed temperature (second equation in (3.6)).

Looking, for instance, at the behaviour of Nus for τ → ∞ in the adiabatic case, the
first step is to identify the leading term and the first-order correction of Θw(s) for
s → 0:

Θw0∞(s) =
θaw

s
, Θw1∞(s) =

θaw

s

(e−2σ − 1)

2Λ
. (A 1)

Therefore, taking into account this result, the transformed heat flux is(
∂Θ

∂η

)
w

(s) =
√

sPr

[
θaw

s
− Θw(s)

]
= −

√
Pr

√
sΘw1∞(s). (A 2)

The inverse transform of this relation provides formula (7.9). The exponential in the
second of equations (A 1) cannot be replaced by its local behaviour for s → 0 in order
to avoid the appearance of a constant term.
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